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Abstract: The thermal cyclization of non-conjugated aromatic enetetrayne (4) led to the
final products (2 and 10) affording SH-12-hydroxybenzo[d]fluoreno[3,2-b]pyran radical
(C) and arylcarbene (D) intermediates. DNA strand cleavage was observed.
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We recently reported a novel thermal cyclization of non-conjugated aromatic enetetraynes 1 to SH-12-
hydroxybenzo{d]fluoreno[3,2-blpyran (2) via radical intermediates (A, B, C) along with its O-alkyl derivatives
3[1] (Scheme 1). To account for the formation of 3 we postulated a carbene intermediate (:CHR)[2] although, in
principle, 3 may also be formed via an ionic intermediate ("CH,R)[3, 4].

Scheme 1.
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During our investigation on the thermal reactions of non-conjugated aromatic enetetraynes we discovered
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that 4 bearing a diethylstilbestrol moiety (the estrogen receptor agonist) as a delivery vehicle undergoes thermal
cyclization in benzene at 25 °C for 72 h to afford 7-arylcyclohepta-1,3,5-triene derivative (11) along with 2 and
its O-alkyl derivative (10) (Scheme 3). Furthermore, we obtained evidence that the arylcarbene (D) is formed in
situ with a lifetime long enough to allow trapping by external reagents. Herein we report the thermal reaction and
DNA strand cleavage of 4.

The synthesis of 4 is outlined in Scheme 2; the starting material (5), prepared by the method described in
the literature[S] was converted into 6 by reaction with ‘BuLi followed by formylation and NaBH,-reduction.
Compound 7, prepared from 2-bromobenzyl bromide and 6, was coupled with 8 under the conditions described
in the literature[1} to afford 9. Oxidation of 9 with 1-hydroxy-1,2-benziodoxol-3( 1H)-one l-oxide (IBX),
followed by the reaction with 4-trimethylsilyl-1,3-butadiyn-1-yl lithium afforded 4." The total yield from 5 was
54%. The structure of 4 was determined on the basis of IR and NMR spectral data.

Figure 1.
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Reagents and Conditiops: a) ‘BuLi/Et,0, -78 °C and DMF; b) NaBH4/MeOH, 0 °C; ¢) NaH/ByNI/DMF, r.t.;
d) PdCly(PPhs)y/toluene, 110 °C; ¢) IBX/DMSO, r.t,; f) Li—~==—==—TMS/Et,0, r.t.

D All new compounds in this paper gave satisfactory IR, NMR, Mass spectra and elementary analyses. Selected physical data are as
follows: 4: yellow powder, 'H-NMR (400 MHz, CDCl,) § 7.71 (d, 1H, J =7.8 Hz),7.60-7.56 (m, 3H), 7.45-7.40 (m, 4H), 7.37-7.25 (m,
2H), 7.21 (d,2H, J =7.8 Hz), 7.12 (d,2H, J =8.8 Hz), 6.90 (d,2H, J=8.5 Hz), 5.96 (d, 1H, J=5.6 Hz), 4.84 (s, 2H), 4.68 (s, 2H), 3.83
(s, 3H), 2.56-2.52 (m, 1H), 2.17-2.09 (m, 4H), 0.78-0.73 (m, 6H), 0.19 (s, 9H). *C-NMR (100Mz, CDCI,) § 157.99, 142.41, 142.28
141.87, 138.95, 138.82, 135.93, 134.84, 133.59, 133.27, 129.88, 129.70, 129.61, 128.81, 128.67, 127.89, 127.60, 127.45, 127.00,
120.26, 120.20, 113.36, 88.77, 87.13, 81.01, 79.23, 79.09, 77.75, 76.24, 72.90, 71.59, 70.53, 63.16, 55.18, 28.57, 28.49, 13.35,
-0.53. IR (KBr) v 3411, 2361, 2343, 2216, 2107 cm™'. FABMS m/z 684 [(M+Na)*].
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Thermolysis of 4 (30 mM) in purified benzene at 25 °C for 72 h afforded 11 in 16% yield along with the
expected products (2 and 10) in 44% and 13% yield. When 4 (3.0 mM and 0.3 mM) in benzene was stirred
under the same conditions, 11 was obtained in increasing yields of 23% and 37% along with 2 in respective
yields of 47% and 55% and 10 in reduced yields of 13% and 4%. Reaction of 4 (126 mM) in styrene afforded
an addition product (12) in a low yield of 5% along with 2 and 10 in 33% and 7 % yields, respectively, with a
large amount of a styrene polymer. Reaction of 4 (3.0 mM) in methanol afforded 13 in 60% yield with 2 in 62 %
yield without giving 10. Treatment of 4 (3.0 mM) in acetic acid afforded 14 in 66% yield with 2 in 71% yield
without giving 10. The results are summarized in Table 1.
Scheme 3.
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Table 1.Thermal Reaction of 4
Conditions®
Compd Solvent (Concentration of 4) Product (%)b
CeHg (30 mM) 2 (44), 10 (13), 11(16)
CeHg (3.0 mM) 2(47), 10 (13), 11(23)
4 CeHg (0.3 mM) 2 (55), 10 (4), 11 (37)

Styrene (126 mM) 2 (33), 10 (7), 12 (5)
CH,0H (3.0 mM) 2(62), 10 (nd)°, 13(60)
CH;COOH (3.0 mM) 2(7D), 10 (nd.)°, 14 (66)

a) Reactions were carried out at 25 "C for 72 h in the dark in the specified solvent with stirring under argon atmosphere.
All solvents were purified by the usual procedure before use. b) Yield: Isolated yield. ¢) n.d.: not detected.

In order to obtain insight into the formation of the carbene, thermal reaction of 4 was carried out in both solvents
of 2-propanol and 2-propanol-d; (Scheme 4). Thermolysis of 4 (3.0 mM) in 2-propanol afforded iso-propyl
ether derivative (15) and arylmethane derivative (16) in 65% and 3.8% yields along with 2 in 72% yield.
Thermolysis in 2-propanol-d, led to the formation of 15-d; and 16-d, containing a deuterium atom (>90 % by
*H-NMR spectrometry) in 65% and 3.6% yields along with 2-d, in 77% yield containing a deuterium atom
exclusively in the 7-position (>95% by H-NMR spectrometry). These findings will provide evidence that the
arylcarbene (D) is formed in situ, although the question why 4 easily generates the reactive carbene remains to be
solved.
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Scheme 4.
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The thermolysis of 4 was shown to induce DNA strand cleavage when incubated with the covalently
closed supercoiled Bluescript I KS* form I DNA at pH 5.0 and 37 °C (Figure 2). Compound 4 clearly cleaved
the DNA (form I) to the open circular DNA (form II) in concentrations from 500 uM to 2,000 pM. The DNAs
(form I and form II) were completely destroyed at concentration of 2,000 uM without affording a linear DNA
(form III).

Figure 2. DNA cleavage with 4; Bluescript Il KS* form 1 DNA (0.75 pg) was incubated for 24 h at 37 °C with
4 in 50 pl of 10% dimethylsulfoxide-Tris-acetate buffer (pH 5.0, 50 mM) and analyzed by electrophoresis (0.7%
agarose gel, ethidium bromide stain): lane 1, DNA alone; lane 2, 10 uM; lane 3, 50 uM; lane 4, 100 uM; lane §,
500 uM, lane 6, 1,000 uM, lane 7, 2,000 uM.

In conclusion, we have found that non-conjugated aromatic enetetrayne derivative (4) undergoes a
thermal radical cyclization to yield 2 and 10, forming the carbene (D) along with the 5H-12-hydroxybenzo-
[d]fluoreno[3,2-b]pyran radical (C). The radical and carbene intermediates thus generated may be utilized to effect
DNA strand cleavage similar to the biradical intermediates in the Bergman and Myers-Saito cycloaromatization
protocols. Further studies on the mechanism and application of this radical-forming reaction are underway.
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